
Threading Model

Product
Market Data Nexus
CEP
Smart Order Routing
Strategy Engines
DARE
Photon
System Administration
Database Access Layer and 
Persistence
Threading Model
High Availability and Failover

THREADING MODEL

Threading Model
The Marketcetera Automated Trading Platform is highly multi-threaded. Marketcetera can be configured 
to take full advantage of all available CPU resources to improve efficiency when processing large 
volumes of executions. A running instance may use tens of threads to over one hundred at any given 
time. Most of these threads are doing tasks unrelated to order and execution processing, like, answering 
UI requests, checking incoming executions for cumulative quantity errors, managing FIX session queues, 
etc. These threads are fixed in quantity and nature and cannot be affected by configuration.

There are a group of threads that can be controlled via configuration. These threads belong to two thread 
pools that are responsible for managing outgoing orders and incoming executions, respectively. The size 
of the thread pool controls how many simultaneous orders or executions can be processed at once. The 
higher the number, the more CPU resources can be dedicated to processing orders and executions. Too 
high a number and the OS spends all its time swapping threads in and out, a state called “thrashing”. The 
ideal configuration is a function of the number and speed of available cores on the machine, the 
additional load on the machine, the distribution of executions relative to orders, and other factors. Since 
executions for a given order must be processed serially, the best possible distribution would have a 
single execution each for thousands of orders as opposed to thousands of executions for a single order.

The DARE FIX engine receives an execution and hands it to a thread dedicated to processing messages 
for that FIX session. The session queue determines what order the execution belongs to. If an Order 
Queue is already dedicated to processing that order, the execution is appended to the collection of 
executions that Order Queue is currently processing. If an Order Queue is not already dedicated to 
processing that order, an Order Queue is allocated from the execution thread pool. If an Order Queue is 
not available because they are all in use, the Session Queue will block until an Order Queue becomes 
available. After an Order Queue is done processing, the Order Queue remains dedicated to that order for 
a configurable period. Setting this value to a high value will make executions for a particular order 
“sticky”, that is, better able to process executions that are separated by a few seconds. Setting this value 
to a low amount will better optimize throughput of executions from many different orders.

If more executions are available to be processed than there are available Order Queues to process them, 
a message will be written to the log indicating that throughput could be faster if more processing 
capability were dedicated to processing executions.

https://confluence.marketcetera.com/display/MATP/Product
https://confluence.marketcetera.com/display/MATP/Market+Data+Nexus
https://confluence.marketcetera.com/display/MATP/CEP
https://confluence.marketcetera.com/display/MATP/Smart+Order+Routing
https://confluence.marketcetera.com/display/MATP/Strategy+Engines
https://confluence.marketcetera.com/display/MATP/DARE
https://confluence.marketcetera.com/display/MATP/Photon
https://confluence.marketcetera.com/display/MATP/System+Administration
https://confluence.marketcetera.com/display/MATP/Database+Access+Layer+and+Persistence
https://confluence.marketcetera.com/display/MATP/Database+Access+Layer+and+Persistence
https://confluence.marketcetera.com/display/MATP/High+Availability+and+Failover

	Threading Model

